Transcriptional and Metabolic Insights into the Differential Physiological Responses of Arabidopsis to Optimal and Supraoptimal Atmospheric CO2

نویسندگان

  • Fatma Kaplan
  • Wei Zhao
  • Jeffrey T. Richards
  • Raymond M. Wheeler
  • Charles L. Guy
  • Lanfang H. Levine
چکیده

BACKGROUND In tightly closed human habitats such as space stations, locations near volcano vents and closed culture vessels, atmospheric CO(2) concentration may be 10 to 20 times greater than Earth's current ambient levels. It is known that super-elevated (SE) CO(2) (>1,200 µmol mol(-1)) induces physiological responses different from that of moderately elevated CO(2) (up to 1,200 µmol mol(-1)), but little is known about the molecular responses of plants to supra-optimal [CO(2)]. METHODOLOGY/PRINCIPAL FINDINGS To understand the underlying molecular causes for differential physiological responses, metabolite and transcript profiles were analyzed in aerial tissue of Arabidopsis plants, which were grown under ambient atmospheric CO(2) (400 µmol mol(-1)), elevated CO(2) (1,200 µmol mol(-1)) and SE CO(2) (4,000 µmol mol(-1)), at two developmental stages early and late vegetative stage. Transcript and metabolite profiling revealed very different responses to elevated versus SE [CO(2)]. The transcript profiles of SE CO(2) treated plants were closer to that of the control. Development stage had a clear effect on plant molecular response to elevated and SE [CO(2)]. Photosynthetic acclimation in terms of down-regulation of photosynthetic gene expression was observed in response to elevated [CO(2)], but not that of SE [CO(2)] providing the first molecular evidence that there appears to be a fundamental disparity in the way plants respond to elevated and SE [CO(2)]. Although starch accumulation was induced by both elevated and SE [CO(2)], the increase was less at the late vegetative stage and accompanied by higher soluble sugar content suggesting an increased starch breakdown to meet sink strength resulting from the rapid growth demand. Furthermore, many of the elevated and SE CO(2)-responsive genes found in the present study are also regulated by plant hormone and stress. CONCLUSIONS/SIGNIFICANCE This study provides new insights into plant acclimation to elevated and SE [CO(2)] during development and how this relates to stress, sugar and hormone signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Metabolic Responses to Combined Heat and Drought Spells in Arabidopsis Thaliana under Ambient and Rising Atmospheric CO2.

As a consequence of global change processes, plants will be increasingly challenged by extreme climatic events, against a background of elevated atmospheric CO2. We analysed responses of Arabidopsis thaliana to a combination of heat wave and water deficit at ambient and elevated CO2, and provided mechanistic insight on changes in primary metabolism. Climate extreme-induced metabolic changes are...

متن کامل

Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection

Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, ...

متن کامل

Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased bi...

متن کامل

TIME SERIES TRANSCRIPTIONAL PROFILING ANALYSIS OF THE Arabidopsis thaliana USING FULL GENOME DNA MICROARRAY AND METABOLIC

Title of Thesis: TIME SERIES TRANSCRIPTIONAL PROFILING ANALYSIS OF THE Arabidopsis thaliana USING FULL GENOME DNA MICROARRAY AND METABOLIC INFORMATION. Bhaskar Dutta, Master of Science, 2004 Thesis Directed By: Dr. Maria Klapa, Assistant Professor Department of Chemical Engineering Dr. John Quackenbush, Investigator The Institute for Genomic Research With the advent of the DNA microarray techno...

متن کامل

The role of microRNAs and phytohormones in plant immune system

The plant-pathogen interaction is a multifactor process that may lead to resistance or susceptible responses of plant to pathogens. During the arms race between plant and pathogens, various biochemical, molecular and physiological events are triggered in plant cells such as ROS signaling, hormone activation and gene expression reprogramming. In plants, microRNAs (miRNAs) are key post-transcript...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012